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Abstract. A continuous-time random-walk method is inwoduced for applications to transport 
processes in random media The method is efficient and is easily parallelizable. It on be used 
to calculate the diffusivity of homogeneous mixtures of many components, with applications to 
effective permeability and conductivity mmurements. It is also applicable to diffusion-limited 
aggregation in random media and to determining connected regions of high permeability in 
geological models of petroleum reservoirs. 

1. Introduction 

In two previous papers [14,16], a random-walk method was introduced for calculating 
the effective permeability of a homogeneous mixture of many-permeability components 
distributed on a large, three-dimensional grid. The method involved extracting the diffusivity 
from the time-evolution of the mean-square displacement of a cloud of random walkers 
moving through the system, and determining the ,permeability via an Einstein relation. It 
was an extension of the ‘blind ant’ algorithm used to calculate the conductivity of conductor- 
insulator systems in percolation theory and porous-media problems [20,23]. In its previous 
formulation, the random-walk algorithm could efficiently b;e applied to homogeneous 
mixtures of two components (i.e. sand-shale sytems) [14,16] or of many, uniformly 
distributed components (i.e. patchwork systems) [15]. However, it became inefficient 
when applied to arbitrarily (e.g. lognormally) distributed permeability components. This 
is because the probability for a walker to move from one site to its neighbour was given by 
the harmonic mean of the adjacent site permeabilities, all normalized to lie between.zero 
and one. When the permeability components were distributed continuously with a large 
variance, the walkers moved inefficiently through the system, often waiting at the same site 
for many simulation steps. 

In this paper it will be described how the concept of continuous-time random waUts can 
be used to define an algorithm in which the walkers make a move at every simulation step, 
with the time being updated from a first-passage time distribution. The algorithm is efficient 
and can be applied to lognormal permeability distributions by using appropriate time scaling. 
Once again, the main focus of the paper is on calculating the effective permeability of large, 
three-dimensional systems of gridblocks for application to petroleum reservoir simulators. 
However, some discussion will also be given to applications of the method to calculating 
effective conductivities of continuum systems and performing diffusion-limited aggregation 
in random media. 
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2. Upscaling permeability for reseikoir simulators 

The reservoir simulators used to predict fluid flow in petroleum reservoirs are based 
on finite-difference methods. The reservoir is modelled by a system of homogeneous 
gridblocks to which ‘effective’ propelty values (e.g. effective permeability) are assigned. 
The problem of determining the appropriate effective values, which correctly model the 
effects of heterogeneities on scales smaller than the gridblock scale, has been the subject of 
much recent research in the petroleum industry [2-5,11,12]. If some idea of the distribution 
of permeability inside the gridblock can be gained, e.g. from well logs andlor cores, then 
Monte Carlo simulations can be performed to calculate the effective permeability at the 
scale desired for reservoir simulations [4]. This is a tedious, but accurate approach. When 
insufficient data are available, or when a rough approximation of the effective permeability is 
considered to be acceptable, fast analytical methods can be used (NB a review of analytical 
methods is given in McCarthy [16]). 

An alternative approach, combining the advantages of speed and accuracy, is to perform 
Monte Carlo simulations for a variety of commonly occumng permeability distributions and 
to parameterize the results by fitting them to a characteristic functional form. Then, effective 
permeabilities can be found by a table look-up. This is a similar approach to that used for 
estimating the conductivities of rocks. In that case, the characteristic functional form is 
derived from Archie’s law [lo]. 

In a previous study [ 161, the effective permeability of sandstonshale distributions was 
parameterized using a power-averaging law, categorizing the distributions in terms of their 
anisotropy and correlation length. It was necessary to perform simulations on large, three- 
dimensional systems of gridblocks (i.e. loo3) because accurate calculations of the effective 
permeability can only be made when the gridblock scale is much smaller than (and the 
system scale much larger than) the scale of correlations. For that reason, a random walk 
method was used rather than the traditional method of solving the flow equations using 
finite differences. Random walk methods are more efficient for large systems [23]. 

Sandstoneshale distributions, in which the permeabilities of the two components differ 
by orders of magnitude, are an important practical case. Another practical case, often found 
in analyses of rock samples [4], is that of lognormally distributed permeability components. 
An efficient random-walk algorithm for this case is described in section 3. It will enable 
extensive Monte Carlo simulations to be performed in the future. 

3. Random-walk methods 

Darcy’s law for the flow of a single-phase fluid in a porous medium gives 

where q is the volumetric flow rate per unit area, k is the permeability, p is the viscosity 
and p is the pressure. The quantity k / p  = K is known as the mobility, and is effectively 
equivalent to the permeability in the context of this paper. 

Assuming incompressible flow, i.e. V . q = 0, leads to the following equation for the 
pressure: 

To compute the effective permeability, K,, for flow in the x-direction through a cubic 
system of gridblocks with permeabilities ~ j ,  the usual procedure is to solve the pressure 
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equation using a finite-difference scheme with constant pressure boundaries on the x-faces of 
the cube and no-flow boundaries on the y- and z-faces of the cube. The integrated ffwc over 
any y-z cross-section of the cube is equated with the flux corresponding to flow through 
a cube of uniform permeability K,. Similar computations must be performed for flow in 
the y and z directions in order to find~K, and K,. To compute the value of the effective 
permeability which is characteristic for a particular distribution, an ensemble average is 
taken over the results obtained for several realizations of the permeability field ~ i .  

When using a random-walk method, the value of the permeability in different directions 
can be found in one simulation by monitoring the mean square displacement in different 
directions separately. The boundary conditions correspond to the pressure tending to zem 
at infinity. 

In order to devise a random-walk algorithm for calculating effective permeability, it is 
necessary to construct a random-walk process in the gridblock system which yields a steady 
state diffusion equation identical in form to (2). In a homogeneous system of permeability K 
this is straightforward-at each simulation step, a walker moves to any of its neighbouring 
sites with equal probability. In the continuum limit, the time-evolution of B cloud of such 
random walkers, starting from an arbitrarily chosen site in the system, is govemed by the 
diffusion equation 

au 
at 
- = DV2u (3) 

where u(x ,  t )  is the probability density of walkers at point x at time f ,  and D is the 
diffusivity. In the steady state, this is .identical in form to (2). A direct correspondence can 
be made between lim,+m U ( X .  t)~and p ( x ) .  and between D and K. 

To calculate the diffusivity of the system it is not necessary to let the random-walk 
process reach its steady state (i.e. it is not necessary to solve the flow equations). Rather, 
diffusivity can be found from the characteristic random walk relation 

( R 2 ( t ) )  - 6Dt (4) 

where ( R Z ( t ) }  is the mean square displacement of the cloud of random walkers at time t. 
Using Einstein's relation, a direct'comspondence can then be made between diffusivity and 
permeability (or conductivity, in the case where one is considering conductive components). 
This technique is what makes the random-walk method an efficient altemative to finite 
differences: The question of efficiency'will be addressed in the section on numerical 
simulations (i.e. section 5).  

For two-component systems in which 'one component is permeable and the other 
impermeable, a random walk process called the 'blind ant' can be used. At each simulation 
step, a walker chooses one of its neighbouring sites at random. If the chosen site is 
permeable, the walker moves there, otherwise it stays put. In either case, the time is 
incremented by one unit. The blind ant algorithm has been used extensively in calculations 
 of the diffusivity and critical exponents of diffusive processes on percolation clusters 
[7,8,221. It has also been used'in studies of electrical transport in homogeneous disordered 
continuumsystems [20,23]. 

Let us consider a random-walk~process in a heterogeneous system in one dimension. 
The discrete diffusion equation for the walk process is 

u( i ,  t + 1) = u(i + 1, t)bi,i+l + u(i - 1, c)bj-~.t + u ( i ,  t)[l - bi,i+l - bi-i.il (5) 
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where b,, is the probability for a walker to move from site i to its neighbouring site j .  
Rearranging gives 

u(i,  f + 1) - u(i,  t )  = [u(i + 1, t )  - u(i,  r)]hi,i+, - [u(i, r )  - u(i - 1, c)lbi-~,i 

which is a discretized form of 

(6) 

- au --(bau]. a 
at ax ax 

In three dimensions this becomes 

au - = v . @Vu). 
at 

(7) 

In order to make the correspondence with (2). it remains to appropriately choose the 
bond probabilities bi.j in terms of the site permeabilities ~ i .  This must be done in such 
a way as to satisfy the boundary conditions for the continuum fluid flow equations at the 
interface between regions of different permeability, i.e. 

(i) The normal component of flow rate per unit area is continuous across the boundary: 

qi -n=q j -n  (9) 

where n is normal to the boundary and qi and qj are measured just inside regions i and j 
respectively. 

(ii) Pressure is continuous at the boundary: 

Pi P j  . (10) 

In discussions of finite-difference schemes (e.g. Aziz and S e t h  [I]) it is shown that 
the appropriate choice to make is the harmonic mean of the site permeabilities. For a 
random-walk process, these have to be normalized to lie between zero and I/z, where z is 
the coordination number of the lattice, so the choice becomes 

where B is the maximum of the set of intersite harmonic means. Then, the generalized blind 
ant process for random walkers in a heterogeneous system becomes: at each simulation 
step, a walker chooses one of its neighbouring sites at random and moves there with 
probability bi.j. The time is incremented by one unit. 

4. Proposed CTRW method 

The blind ant process described in section 3 has been used successfully to calculate effective 
permeabilities of homogeneous mixtures of two non-zero permeability components [14,16] 
and of many, uniformly distributed permeability components [15]. However, as explained 
in the introduction, it is inefficient when applied to arbitrarily (e.g. lognormally) distributed 
permeability components. 

According to the generalized blind ant rules, a walker can be bapped for many sim- 
ulation steps at any site which is surrounded by low bond probabilities. A more efficient 
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Table 1. Results for uniform continuous distributions in the interval [o. b]. Comparisonof fiNle 
differences (FD) with t h e m  algorithm for various maximum times. . 

IO. 11 r1.91 11.94 11.99991 
Arithmetic mean 0.50 5.00 50.0 5000 
Geometric mean 0.368 4.36 38.2 3680 
K (m) 0.317 * 0.002 4.29 f 0.01 38.5 f0.2 3790 f 20 

K (craw) IO4 steps 0.378 1.0.008 4.29 fO.ll 38.2 f 0.5 3760 f 130 
K (craw) I O 3  steps 0.377 & 0.009 4.26 & 0.11 38.0 i 1.0 38io*170 

process would make the walkers move at every simulation step. A process of this type 
which has been used in the twocomponent, permeablefimpermeable case is called the ‘my- 
opic ant’. The myopic ant only chooses from those of its neighbours which are permeable, 
and it always makes a move. However, in its usual implementation. the myopic ant process 
does not correspond to the appropriate diffusion process (equation (8)) and cannot be used 
to calculate diffusivities. Its use has been restricted to calculating critical exponents for 
diffusion on percolation clusters [S, 13,18,22] (NB the critical exponents are the same for 
the blind and myopic ants). 

To define a generalized myopic ant process which has the correct time evolution, we 
have used the concept of continuous-time random walks (cmw) [7]. In CTRW processes, 
the walker makes a move at every simulation step and the time is updated according to 
a first-passage time distribution. For a Poisson process such as that described by (5). the 
first-passage time distribution is exponential. So, the proposed process is as follows: 

(i) Set the proba6ility for a walker to stay at the same site to zero. 
(ii) Normalize the probabilities to move to neighbouring sites according to 

(12) 

(iii) At each~ simulation step, a walker chooses one of its neighbouring sites with a 

(iv) The time is updated according to an exponential waiting-time distribution [I91 
probability weighted by &, and moves there. 

where rand is a uniform random number in t h e  interval [0, I]. 

5. Numerical simulations 

In order to compute the time evolution of the mean square displacement of a cloud of 
random walkers moving according to the proposed rules, the following procedure is used 
A maximum time is specified and each walk is discretized into time intervals of fixed length. 
For example, if the maximum time is set at I d  units, then one could use 10’ time-bins 
of length 10. At each simulation step, a walker makes a move to a neighbouring site and 
the new value of-the displacement is added to the time-bin corresponding to the discretized 
updated time. The old value of the displacement is added to all the time-bins between the 
old one and the new one. If the updated time is greater than the maximum time, the old 
value of the displacement is added to all the remaining time-bins and a new walk is started. 
Each walk is started from a randomly chosen site. 
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Figure 1. Effective permeability versus volume bclion for a random, uncorrelated. two- 
component system with a permeability c o n m  ratio of 0.01. Comparison between lhe CTRW 
algorithm (K& 0.01. (3). the blind ant algorithm (0). the myopic ant algorilhm (x), and a 
finitedifference algorithm (A). In all cases. the error bars are of the order of twice lhe size of 
the plotting symbols uSed and have teen omitted for clarity. 

How the time-scale is chosen depends on the type of permeability distribution being 
simulated and the required accuracy. For a discrete two-component distribution, or for a 
continuous uniform distribution, it is sufficient to use walks with a maximum time of lo3 
units to get answers correct to two significant figures. This is illustrated by the results shown 
in table 1 for effective permeability calculations on four continuous uniform distributions. 
The table compares results obtained using a finite-difference algorithm with those obtained 
using the CTRW method with different maximum times. Statistics were taken over 10 
realizations of the permeability distribution on a lattice of size 303, with 1000 random 
walkers on each realization. 

Table 1 also contains values of the arithmetic and geometric means of the distributions. 
For continuous uniform distributions, the geometric mean is a very good estimator of the 
effective permeability. Other analytical estimators, e.g. from perturbation theory, are also 
good in this case. However, they break down in the case of two-component distributions 
with a large permeability contrast ratio (i.e. sandstoneshale distributions), or lognormal 
distributions with a large variance [U]. The random-walk method can handle these awkward 
cases. 

Figure 1 shows graphs of effective permeability versus volume fraction calculated for 
random, uncorrelated, twosomponent systems with a permeability contrast ratios of 0.01. 
The figure compares results obtained using the CTRW algorithm with those obtained using 
the blind ant algorithm [61, the myopic ant algorithm 1181, and a finite-difference algorithm. 
The random walks were of length 1000 steps. It is clear that the different methods give 
consistent results, except for the myopic ant algorithm. 
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Table 2. CPU times taken to calculate the permeability for fen realizations of a random, 
uncorrelated, two-component system with a permeability contrast mi0 of 0.01 and a shale 
volume fraction of 0.4. Comparison df fini6-difference and m w  methods of an ApoUo 10000 
workstation. 

lattice size ~ Method CPU time (s) 

303 Finite difference 1285.4 
30' m w  (1000 steps) 258.6 ~ ~ ~ 

1003 Finite difference 138998.8 
1003 m w  (1000 steps) 914.0 
1003 m w  (10000 steps) 3 193.5 

Table 3. Results for lognormal dishibution [a. b. c]. where a is the geometric mean, b is the 
variance and exp(c) is the high-permeability cut-off. Comparison of finite differences (FD) with 
CTRW algorithm for various maximum times. 

[2,0.5,801 ~ [2. IO, 81 12. IO. SO1 

Arithmetic mean 2.6. 59 . 304 
Geometic mean 2 2 ~~. 2. 
Maximum permeability 20 3000 60000 - 
Estimsted ti,me.de 8000 50000 200000 
K tm) 1.943 * 0.009 2.356+0.058 2.469 k 0.40 
K io") 103 steps 
K t m w )  104 stem 1.95.1 0.06 2.53 & 0.10 . 3.77 + 0.44 1.92 i 0.05 

K i m w j  105 steps 1.9510.05 , 2.34*0.05 2.71 +0.17 
K ( m w )  IO6 stem 2.43&0.11 

Table 2 shows CPU times taken to calculate the permeability for ten realizations of a 
random, uncomelated, two-component system with a permeability contrast ratio of 0.01 
and a shale volume fraction of 0.4. The comparison is between the finite-difference and 
CTRW methods on an Apollo~lOOOO workstation. The method used for matrix inversion in 
the finite-differince method was conjugate gradients wiihout preconditioning. These times 
indicate the greater efficiency of the CTRW method, especially as the lattice size increases. 
However, the question of efficiency is not an easy one to pin down. It is complicated by 
the fact that the length of the walks in the CTRW method is not fixed, but depends on the 
path taken. Also, in general,, the random-walk~method can only be expected to give 5-10% 
accuracy I231 because of its intrinsic noisiness, whereas the finite-difference method can 
be made to converge to an arbitrary accuracy for a well posed problem. The random-walk 
method comes into its own when the size ofthe lattice precludes the use of finite differences. 
An accuracy of 540% is quite acceptable for problems of the type addressed in this paper 
(i.e. calculating the permeability of porous media). 

Table 3 shows the results obtained for three lognorinal distributions with different 
variances andor high-permeability cut-offs. The estimated time-scale for the CTRW 
algorithm is calculated from the ratio of the maximum'permeability value to the arithmetic 
mean, multiplied by 1000. This compensates for the normalization of the bond probabilities 
which must be carried out in order to make the values lie in the interval [O,l/zl. The 
estimated time-scales are validated by the convergence of the effective permeability results 
in table 3. Referring to the details of the CTRW algorithm, it is clear that the time taken for 
the simulations is not directly proportional to the maximum number of time steps, since a 
walk can terminate at any step if the updated time is greater than the'maximum time. It 
depends on the distribution of bond connectivites. 



2502 J F McCarrhy 

6. Other applications 

The cmw method is not restricted to regular lattices. It can easily be implemented on 
random lattices such as an unstructured Delaunay mesh [25]. This suggests an application of 
the method to calculating the conductivity of tortuous porous systems [231. An unstructured 
mesh could be constructed inside the porous region, with its nodes distributed densely inside 
narrow pores, and appropriate bond connectivites assigned using standard finite-difference 
techniques [9 ] .  Then random walkers would be allowed to diffuse through the system 
according to the cmw rules. Using an unstructured mesh ensures that the random walkers 
move relatively large distances when far from a boundary and short distances when near 
a boundary. Using the m w  method enables the heterogeneous bond connectivities to be. 
dealt with in an efficient manner. 

The CTRW method can easily be applied to diffusion-limited aggregation (DLA) in random 
media. In DLA, only the endpoint of the walk is important, not the time taken. Therefore, it 
would only be necessary to choose which neighbour to move to at each simulation step, not 



Continuous-time random walks on random media 2503 

to update the time. In this case, the method reduces to that of Selinger et al [21]. Figure 2 
shows the result of a DLA process carried out in a region of fractal permeability using the 
CTRW method. The fractal map was generated using the fast fourier transform technique of 
Voss [NI. Note that the cluster tends to move into the regions of high permeability (i.e. 
lightly shaded regions). 

Another application of CTRW in random media is in determining connected regions of 
high permeability between wells in geological models of petroleum reservoirs 1171. 

7. Conclusion 

In this paper a m w  method has been introduced for applications to transport processes 
in random media. The method is efficient and is easily parallelizable. which will be an 
important consideration in the emerging eraof parallel computing. The method can be used 
to calculate the diffusivity of homogeneous mixtures of many components, with applications 
to effective permeability and conductivity measurements. It is also applicable to DLA in 
random media and to determining connected regions of high permeability in geological 
models of petroleum reservoirs. 
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